

Flywheel Power System Trade Studies

Flywheel Workshop October 7, 1998

Lee Mason
NASA Lewis Research Center

Outline

- Technology Projections
- Generic Mission Studies
 - LEO
 - **GEO**
- Recent Trade Studies
 - Space Based Radar
- Observations/Feedback
- Challenges to Flywheel Industry

Technology Projections

	State-of-the-Art	Near Term	Future	
Power Generation	• 19% GaAs/Ge rigid arrays, 40 W/kg	 23% GaInP/GaAs/Ge SCARLET, 7:1 Conc Ratio, 60 W/kg array 9% α-Si flexible blanket, 100 W/kg 25% SD-Brayton w/TES, 10 W/kg system 	 35% 3-4 Junction MBG, 100 W/kg, rigid or conc array 15% CIS thin film blanket, 300 W/kg 35% SD-Stirling w/TES, 15 W/kg system 	
Energy Storage	 25 Whr/kg NiCd, 15% LEO DOD, 60% RT efficiency 35 Whr/kg CPV NiH2, 35% LEO DOD, 80% RT eff 	 100 Whr/kg Li-Ion, 35% LEO DOD, 90% RT efficiency 44 Whr/kg Flywheels, 89% DOD, 92% RT efficiency 	• 250 Whr/kg Li- Polymer, 60% LEO DOD, 90% RT eff • 66 Whr/kg IPACS Flywheels, 89% DOD, 92% RT eff	
Power Mgmt & Distribution	• 28 Vdc, 80-90% efficiency, 40-50 W/kg	• 120 Vdc, 85-95% efficiency, 125 W/kg	• Integrated Bus, 85- 95% efficiency, 250 W/kg	

LEO Energy Storage Comparison

Lewis
Research
Center

Mission: 5 kW LEO Satellite, 100 min orbit, 35 min eclipse

	NiH2	Li-Ion	Flywheels
Storage Wh/kg	35	100	44
DOD	35%	35%	89%(1)
RT efficiency	80%	90%	92%
Charge/discharge			
efficiency	90%	90%	N/A
Charge/discharge			
mass, W/kg	200	200	N/A
Del'd energy, kWh	2.9	2.9	2.9
Stor'd energy, kWh	9.3	9.3	3.3
Req'd energy, kWh	4.5	4.0	3.2
Array power ⁽²⁾ , kW	10.2 (100%)	9.7 (95%)	8.8 (87%)
Storage Mass, kg	289 (100%)	118 (41%)	74 (26%)

^{(1) 89%} DOD relates to 3:1 flywheel speed ratio

^{(2) 90%} PMAD efficiency assumed

GEO Energy Storage Comparison

Lewis Research Center

Mission: 15 kW GEO Satellite, 1440 min orbit, 70 min eclipse

	NiH2	Li-Ion	Flywheels
Storage Wh/kg	35	100	44
DOD	70%	70%	89%(1)
RT efficiency	80%	90%	92%
Charge/discharge			
efficiency	90%	90%	N/A
Charge/discharge			
mass, W/kg	200	200	N/A
Del'd energy, kWh	17.5	17.5	17.5
Stor'd energy, kWh	27.8	27.8	19.7
Req'd energy, kWh	27.0	24.0	19.0
Array power ⁽²⁾ , kW	18.0 (100%)	17.8 (99%)	17.6 (98%)
Storage Mass, kg	869 (100%)	353 (41%)	447 (51%)

^{(1) 89%} DOD relates to 3:1 flywheel speed ratio

^{(2) 90%} PMAD efficiency assumed

Recent Trade Studies

- Space Based Radar
 - SPEAR & SPEAR U/X (AF)
 - Discoverer II (DARPA)
- Reusable Launch Vehicle (MSFC)
- GEO Communications Satellites (Hughes)
- International Space Station (JSC)
- Space Science Team X (JPL)
- Human Mars Mission (JSC)
- Space Solar Power (NASA HQ)

SBR Concepts

Lewis Research Center

<u> </u>	Discoverer II	SPEAR	SPEAR UX	Techsat 21	MEO	Mitre I	Bistatic
Sponsor	DARPA	AF-PL	AF-PL	AF-PL	AF-Rome	AF	
Orbit	770 km	850 km	850 km	700-800 km	10371 km	GEO Illum	LEO Revr
Antenna	5x8m	6x22m	6x44m	2x2m	50m dia	80m dia	6x44m
Frequency	X-band	X-band	X + UHF	X-band	L-band	S-band	X-band
Constellation	24 Sats	36 Sats	80 Sats	35x16 Sats	16 Sats	3 Sats	75 Sats
Standby Pwr	0.4 kWe	1.2 kWe	1.3 kWe	0.1 kWe	4.9 kWe	-	?
Radar Pwr	4.8 kWe	26.2 kWe	29.9 kWe	1.0 kWe	119.0 kWe	-	?
Radar Duty	10%	30%	30%	22%	36%	100%	26%
Avg Pwr	0.8 kWe	8.7 kWe	9.9 kWe	0.3 kWe	46.0 kWe	60 kWe	5 kWe
Timeframe	2003	2015	2025	>2005	>2010	?	?
S/C Mass	1500 kg	4400 kg	6500 kg	100 kg	?	18000 kg	?
S/C Cost	\$100M	\$150M	\$180M	\$10M	?	?	?

SPEAR & SPEAR U/X

Lewis Research Center

- SPace Electronically Agile Radar
 - AF Phillips Lab Concept (SBR IPT-Dr. Yolanda King)
 - Possible AWACS Replacement (High Res. SAR, GMTI, AMTI)
 - Near Term Focussed on Risk Reduction Activities
 - Power is Critical Technology
- LeRC Initiated Trade Study to Examine Solar Dynamic Applicability
 - SD Performance, Cost, Design, and Program Definition
 - Boeing (Seattle) Task Order
 - Independent Technology Review

Performance Comparisons SPEAR & SPEAR U/X

Lewis Research Center

- 33-60% Mass Savings over SOA with Advanced Power
- Similar Savings in Deployed Area, Stowed Volume
- Benefit to Mission is Increased Mass & Volume for Payload
- Development Costs for Advanced Power are often Offset by Reduced Launch Vehicle and/or Integration Costs
- Large Satellite Constellations (i.e. SBR) are Excellent Candidates for Advanced Technology due to Long Term Recurring Cost Savings

Discoverer II

Joint DARPA/AF/NRO Program

- Formerly STARLITE
- Develop High Resolution Synthetic
 Aperture Radar (SAR), Ground
 Moving Target Indication (GMTI)
- 2003 Flight of (2) Demo Sats
- 2007+ Objective System (24-48
 Satellite Constellation)
- LeRC Requested to Provide Power Technology Support
 - Space Act Agreement with DARPA (2/98)
 - Trade Study Initiated (3/98)
 - Compare Options on Performance, Cost
 - Develop Power Technology Roadmaps for DARPA

Orbit: 770 km, 55° inclination 100.2 minute period

35.0 minute maximum eclipse

Variations

Spacecraft: 400 Watt standby (nominal). . .800 W (2x)

4.8 kWe radar (peak). 9.6 kW (2x) 10 minute peak duty cycle. . . . 20 min (2x)

120 Vdc bus voltage

1-2 yr life (Demo), 7 yr life (Objective System)

2000-2005 technology cut-off

Technology Options Discoverer II

Power Generation	Energy Storage
Photovoltaic	Electrochemical
Silicon	NiCd
GaAs	IPV NiH2
Multi-band Gap	CPV NiH2
(GalnP/GaAs)	NiMH2
RAINBOW	Liquid Li-lon
SCARLET	Solid Li-Polymer
SOLARCON	NaS
a-Si	Mechanical
CulnSe (CIS)	Flywheels
Solar Thermal	Thermal
Brayton	LiFCaF2
Stirling	LiF
Rankine	
Thermionic	
AMTEC	
TPV	

Power System Trade Matrix

		Energy Storage				
		NiH2	Li-lon		ĒΨ	TES
	PV GaAs	Ref	4	4	4	
l	PV M∰BG	- ◀	4	◀	◀	
	PV S∰arlet	- ◀	4	◀	◀	
	PV ੴSi	4	- ◀	◀	-	
	SD Brayton SD Stirling				- ◀	- ◀
	SD Stirling				•	- ◀

Power System Sizing Discoverer II

Lewis Research Center

	Power Ge	eneration	Energy Storage		
	Bus	EOL Source	Delivered	Stored	
	Power, kW	Power, kW	Energy, kWh	Energy, kWh	
PV/NiH2	2.08	2.45	1.03	3.48	
PV/Li-Ion	1.90	2.25	1.03	3.48	
PV/NaS	2.04	2.40	1.03	3.00	
PV/FW	1.53	1.84	1.03	1.15	
Brayton/FW	0.97	1.15	0.65	0.74	
Stirling/FW	0.97	1.22	0.65	0.74	
Brayton/TES	4.90	5.26	-	-	
Stirling/TES	4.90	5.78	-	-	

Source Power and Energy Storage Size vary with Technology

Performance Comparison Discoverer II

Lewis Research Center

Conclusions:

- Largest Mass Savings Realized with Advanced Energy Storage
- Flywheels offer 48% System Mass Improvement over NiH2
 - Key is high roundtrip efficiency
 - Result is reduction in source power, storage size, and PMAD
 - Additional satellite benefit is elimination of separate ACS
- Li-Ion also Attractive Option due to High Energy Density
- High Efficiency (MBG or Conc)
 Arrays provide 18% Area Reduction
- a-Si provides 33% Array Mass Savings, but 2x Area Penalty
- Stirling/FW offers 50% Mass Savings over GaAs/NiH2 and Minimum Deployed Area

Beyond Discoverer II

Observations

- Advanced power system technologies can significantly reduce the mass and cost of future satellites
 - Mass savings ⇒ 1) Greater payload capability, or 2) Smaller launch vehicle, or 3) More satellites per launch
 - Recurring cost savings is result of smaller units, fewer parts, more simple production process, less complicated systems
 - Dual functionality of IPACS Flywheels provides added benefit
- Energy storage is usually key to reducing system mass
 - More than just energy density!
- System trade studies provide mechanism for identifying:
 - Technologies that offer greatest mission benefit
 - Key performance parameters
- Benefit of advanced technology is more easily recouped in large satellite constellations like SBR
 - Higher DDT&E costs offset by recurring cost savings

Flywheel Challenges

- Overcome "Standard Operating Practices" of Satellite Manufacturers (i.e. PV arrays + Batteries)
- Provide Overwhelming Reasons for Missions to Consider Alternative to Batteries
 - Lower Mass
 - Reduced Source Power
 - Longer Life
 - Less Complicated
 - Dual Functionality (i.e. IPACS)
- Demonstrate Technology in Ground Testing & Flight Experiments
 - End-to-End System Demos
 - Substantiate Performance Claims
 - Alleviate Safety Concerns
- Technology Development and Demonstration is more Important than Continual Performance "Tweaking"